

PII: S0040-4039(96)02267-8

³He NMR Spectra of Highly Reduced C₆₀

W. E. Billups,* Alexander Gonzalez, Christoph Gesenberg, Weimei Luo, Terry Marriott, Lawrence B. Alemany

Department of Chemistry, Rice University, Houston, Texas 77251

Martin Saunders,* Hugo A. Jiménez-Vázquez, Anthony Khong

Department of Chemistry, Yale University, New Haven, Connecticut 06520

Abstract: Two signals were observed in the ³He NMR spectrum of ³He@C₆₀H₃₆. The major signal corresponds with the ³He chemical shift calculated for a structure with $D_{3d'}$ symmetry. Copyright © 1996 Elsevier Science Ltd

The discovery^{1,2} that ³He can be introduced into C_{60} and C_{70} by heating at 620 °C with the helium at high pressure represents an important advance in the characterization of fullerene derivatives since the ³He NMR spectrum of each product will yield a single sharp peak and no non-fullerene products or impurities give signals.³ Bühl, Thiel and Schneider⁴ have suggested that ³He labeling and NMR, assisted by computational results dealing with ³He chemical shifts, might provide new information concerning the nature of the highly reduced fullerene C₆₀ formed either by dissolving metal reductions⁵ or by transfer hydrogenation.⁶ We report here the ³He chemical shift values of ³He@C₆₀H₃₆ products prepared from both the Birch reduction of ³He@C₆₀ and transfer hydrogenation using dihydroanthracene as the source of hydrogen.

Samples of ³He@C₆₀H₃₆ were prepared by reduction of ³He@C₆₀ using a lithium/NH₃ medium.⁵ Atmospheric Pressure Chemical Ionization (APCI), Chemical Ionization (CI) and Electron Impact (EI) mass spectral analyses of these samples show that C₆₀H₃₆ species are the main products of this reduction. In contrast to the report of Banks, et al.,⁷ no evidence for either less-hydrogenated species or the parent fullerene was observed. Thus, mass spectra of the Birch reduction product taken immediately after work-up showed intense peaks for C₆₀H₃₆ only (EI: M⁺ = 756.4, CI: M-1 = 755.4, APCI: M-1 = 755.4). However, we also find that a range of fullerene hydrides including C₆₀H₁₈ and C₆₀H₃₂ can be observed when the Birch product is exposed to air. Darwish et al. have reported similar results for mass spectral analyses of C₆₀H₃₆ formed by the Zn/HCl reduction of C₆₀.⁸ The mass spectrum of a sample of C₆₀H₃₆ using EI conditions is displayed in Figure 1.

 3 He@C₆₀H₃₆ from the transfer hydrogenation using dihydroanthracene was prepared by heating 3 He@C₆₀ in the presence of dihydroanthracene as described by Rüchardt and his coworkers.⁶ This reaction was carried out under conditions where 3 He@C₆₀H₁₈ is also a component of the reaction mixture.

Figure 1. EI mass spectrum of the Birch reduction products of C₆₀.

The ³He NMR spectrum of ³He@C₆₀H₃₆ from the Birch reduction exhibits two peaks at -7.7 and -7.8 ppm relative to dissolved ³He gas. These peaks were also found in the ³He NMR spectrum of the product mixture prepared using the dihydroanthracene reduction described by Rüchardt and his coworkers. A third absorption at -16.45 ppm was assigned to ³He@C₆₀H₁₈ by comparison with a nearly pure sample prepared via the Rüchardt procedure. The ³He NMR spectrum of the dihydroanthracene reduction mixture is presented in Figure 2.

Figure 2. ³He NMR spectrum of a mixture of ³He@C₆₀H₃₆ and ³He@C₆₀H₁₈

The computed endohedral NMR chemical shifts reported by Bühl, Thiel and Schneider⁴ for selected isomers of ${}^{3}\text{He}@C_{60}\text{H}_{36}$ (Figure 3) are -10.8 (T), -7.7 (D_{3d}), -6.1 (S₆), -3.4 (T_h) and -5.6 ppm (D_{3d}). Comparison of these values with the experimental chemical shifts would seem to support the $D_{3d'}$ isomer as the most reasonable candidate. The less intense signal appearing at -7.8 ppm may represent a structure not considered by Bühl, Thiel and Schneider. Although the T form has the lowest energy of all the isomers studied,⁹⁻¹² the computed chemical shift for this isomer is 3.1 ppm upfield from the nearest observed signal. The T_h isomer which was originally proposed on the basis of a rational Birch reduction mechanism can probably be eliminated as a possible candidate since the calculated chemical shift for this isomer is 4.3 ppm downfield from the observed value.

Figure 3. Five isomers of C₆₀H₃₆.

Acknowledgments

We gratefully acknowledge financial support from the National Science Foundation (CHE-9112530) and the Robert A. Welch Foundation. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. We thank Drs. Bühl, Thiel and Schneider for permission to use their drawings.

References

- 1. Saunders, M.; Jiménez-Vásquez, H. A.; Cross, R. J.; Poreda, R. J. Science 1993 259 1428.
- Saunders, M.; Jiménez-Vásquez, H. A.; Cross, R. J.; Mroczkowski, S.; Gross, M. L.; Giblin, D. E.; Poreda, R. J. J. Am. Chem. Soc. 1994, 116, 2193.
- Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Mroczkowski, S.; Freedberg, D. I.; Anet, F. A. L. Nature 1994, 367, 256.
- 4. Bühl, M.; Thiel, W.; Schneider, U. J. Am. Chem. Soc. 1995, 117, 4623.
- Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C.; Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E. J. Phys. Chem. 1990, 94, 8634.
- (a) Rüchardt, C.; Gerst, M.; Ebenhoch, J.; Beckhaus, H.; Campbell, E. E. B.; Tellgmann, R.; Schwarz, H.; Weiske, T.; Pitter, S. Angew. Chem. Int. Ed. Engl. 1993, 32, 584. (b) Gerst, M.; Beckhaus, H.; Rüchardt, C.; Campbell, E. E. B.; Tellgmann, R. Tetrahedron Letters 1993, 34, 7729.
- Banks, M. R.; Dale, M. J.; Gosney, I.; Hodgson, P. K. G.; Jennings, R. C. K.; Jones, A. C.; Lecoultre, J.; Langridge-Smith, P. R. R.; Maier, J. P.; Scrivens, J. H.; Smith, M. J. C.; Smyth, C. J.; Taylor, A. T.; Thorburn, P.; Webster, A. S. J. Chem. Soc., Chem. Commun. 1993, 1149.
- Darwish, A. D.; Abdul-Sada, A. K.; Langley, G. J.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. J. Chem. Soc. Perkin Trans. 2 1995, 2359.
- Dunlap, B. I.; Brenner, D. W.; Mintmire, J. W.; Mowrey, R. C.; White, C. T. J. Phys. Chem. 1991, 95, 5763.
- Austin, S. J.; Batten, R. C.; Fowler, P. W.; Redmond, D. B.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1993, 1383.
- 11. Attalla, M. I.; Vassallo, A. M.; Tattam, B. N.; Hanna, J. V. J. Phys. Chem. 1993, 97, 6329.
- 12. Book, L. D.; Scuseria, G. E. J. Phys. Chem. 1994, 98, 4283.

(Received in USA 18 October 1996; revised 30 October 1996; accepted 8 November 1996)